Determination of the scattering anisotropy with optical coherence tomography.

نویسندگان

  • V M Kodach
  • D J Faber
  • J van Marle
  • T G van Leeuwen
  • J Kalkman
چکیده

In this work we demonstrate measurements with optical coherence tomography (OCT) of the scattering phase function in the backward direction and the scattering anisotropy parameter g. Measurements of the OCT attenuation coefficient and the backscattering amplitude are performed on calibrated polystyrene microspheres with a time-domain OCT system. From these measurements the phase function in the backward direction is determined. The measurements are described by the single scattering model and match Mie calculations very well. Measurements on Intralipid demonstrate the ability to determine the g of polydisperse samples and, for Intralipid, g = 0.35 ± 0.03 is measured, which is well in agreement with g from literature. These measurements are validated using the Intralipid particle size distribution determined from TEM measurements. Measurements of g and the scattering phase function in the backward direction can be used to monitor changes in backscattering, which can indicate morphological changes of the sample or act as contrast enhancement mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...

متن کامل

In Vitro Assessment of Optical Properties of Blood by Applying the Extended Huygens-Fresnel Principle to Time-Domain Optical Coherence Tomography Signal at 1300 nm

A direct method for the measurement of the optical attenuation coefficient and the scattering anisotropy parameter based on applying the extended Huygens-Fresnel principle to optical coherence tomography images of blood is demonstrated. The images are acquired with a low-power probing beam at the wavelength of 1300 nm. Values of 12.15 mm(-1) and 0.95 are found for the total attenuation coeffici...

متن کامل

Clinical Applications of Optical Coherence Tomography in Ophthalmology

Assessment of the peripapillary nerve fiber layer and macular thickness can be determined in ophthalmology using optical coherence tomography (OCT). Decreased nerve fiber layer thickness and macular ganglion cell thickness in optic nerve ischemia have been correlated with visual field loss. OCT allows deep optic nerve head evaluation which helps understand pathophysiology of diseases.  Furtherm...

متن کامل

Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography

Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...

متن کامل

Determination of optical scattering properties of highly-scattering media in optical coherence tomography images.

We developed a new algorithm that fits optical coherence tomography (OCT) signals as a function of depth to a general theoretical OCT model which takes into account multiple scattering effects. With use of this algorithm, it was possible to extract both the scattering coefficient and anisotropy factor from a particular region of interest in an OCT image. The extraction algorithm was evaluated a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 2011